Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

An-Shu Wu, Xiang-Gao Li,* De-Shun Xu and Shi-Rong Wang

School of Chemical Engineering and
Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: wuanshujxys@126.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.054$
$w R$ factor $=0.131$
Data-to-parameter ratio $=14.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N,N-Dibenzyl-4-(4,4-diphenylbuta-1,3-dienyl)-3-methylaniline

The title compound, $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}$, was synthesized by the WittigHorner reaction of 4-(N, N-dibenzylamino)-2-methylbenzaldehyde and the phosphonate carbanion, derived from 1,1-diphenyl-3-chloropropylene and triethyl phosphite by the Arbuzov reaction. The butadiene fragment has a planar cisoid conformation, while the two benzyl fragments are almost parallel to each other, forming a dihedral angle of $9.8(2)^{\circ}$.

Comment

Hole transporting materials (HTMs) play an important role in the fabrication of organic photo-conductors (OPCs) (Wu et al., 2005) and organic light-emitting diodes (OLEDs) (Li et al., 2005; Satoh et al., 2003). Substances containing the butadiene structure have been widely investigated, because of their easy preparation by the Wittig reaction and favorable hole-transport properties when used as HTMs (Enokida \& Hirohashi, 1991). We report here the synthesis and crystal structure of the title compound, (I), synthesized by the Wittig-Horner reaction of 2-methyl-4-(N, N-dibenzyl)aminobenzaldehyde and the phosphonate carbanion, derived from 1,1-diphenyl-3-chloropropylene and triethyl phosphite by the Arbuzov reaction.

(I)

Fig. 1 shows the molecular structure of (I). The butadiene fragment $\mathrm{C} 13=\mathrm{C} 14-\mathrm{C} 15=\mathrm{C} 16$ is planar, with a maximum deviation of 0.003 (7) \AA for atom C15, and has a cisoid conformation. Both the $\mathrm{C} 1 / \mathrm{C} 13 / \mathrm{C} 7$ plane and the plane of the C17-C22 benzene ring show substantial deviations from the butadiene plane, forming dihedral angles with the latter of $9.3(2)^{\circ}$ and $130.3(2)^{\circ}$, respectively. The dihedral angles formed by the plane of the butadiene fragment with the planes of the $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 7-\mathrm{C} 12$ rings are $69.6(2)^{\circ}$ and $39.2(2)^{\circ}$, respectively. The two benzyl fragments (C24-C30) and (C31C37) are almost parallel to each other, forming a dihedral angle of $9.8(2)^{\circ}$. The C1-C13 [1.487 (3) Å] and C7-C13

Received 7 November 2005 Accepted 14 November 2005 Online 19 November 2005
[1.480 (3) Å] bond distances are a little longer than C16-C17 [1.467 (3) Å].

Experimental

A mixture of 1,1-diphenyl-3-chloropropylene ($11.4 \mathrm{~g}, 0.05 \mathrm{~mol}$) and triethyl phosphit ($18.0 \mathrm{ml}, 0.05 \mathrm{~mol}$) was refluxed in 50 ml of xylene for 10 h and the xylene was then removed in vacuo. After cooling, 2-methyl-4-(N, N-dibenzyl)aminobenzaldehyde ($12.6 \mathrm{~g}, 0.04 \mathrm{~mol}$) and 100 ml of dimethylformamide were added to the flask containing the residue. Thereafter, $4.5 \mathrm{~g}(0.04 \mathrm{~mol})$ of potassium tert-butoxide was added in small portions. The resulting mixture was stirred for 5 h and then poured into methanol. The resulting precipitate was separated from the liquid by filtration, purified by silica gel column chromatography (eluent: toluene/ethyl acetate $=2: 1$), recrystallized from hexane, and dried to obtain yellow crystals (yield: 41.2%, m.p. 420 K).

Crystal data

$\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}$
$M_{r}=491.64$
Triclinic, $P \overline{1}$
$a=6.1629$ (16) £
$b=15.935$ (4) \AA
$c=16.323$ (4) A
$\alpha=117.824$ (4) ${ }^{\circ}$
$\beta=90.749$ (5) ${ }^{\circ}$
$\gamma=99.054(5)^{\circ}$
$V=1393.2(6) \AA^{3}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.974, T_{\text {max }}=0.995$
7091 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.131$
$S=1.02$
4873 reflections
344 parameters
H -atom parameters constrained

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.172 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 1753
reflections
$\theta=2.5-26.3^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Plate, yellow
$0.40 \times 0.16 \times 0.08 \mathrm{~mm}$

4873 independent reflections
2678 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-7 \rightarrow 5$
$k=-18 \rightarrow 18$
$l=-15 \rightarrow 19$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0464 P)^{2}\right. \\
& \quad+0.1576 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \text { e } \AA^{-3}
\end{aligned}
$$

H atoms were positioned geometrically and refined in the ridingmodel approximation, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic and methine H atoms $\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right.$ for CH_{3}.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small circles of arbitrary radii.

Figure 2
Packing diagram of (I).

SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was financed by the National High-Technology Research and Development Program of China (grant No. 2002AA325050).

References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Enokida, T. \& Hirohashi, R. (1991). J. Appl. Phys. 70, 6908-6912.
Li, J. Y., Li, Y. Q., Lee, C. S., Kwong, H. L. \& Lee,S. (2005). Chem. Mater. 17, 1208-1212.
Satoh, N., Cho, J. S., Higuchi, M. \& Yamamoto, K. (2003). J. Am. Chem. Soc. 125, 8104-8105.
Sheldrick G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wu, A.-S., Li, X.-G., Wang, S.-R. \& Xue, J.-Q. (2005). Gongneng Cailiao, 36, 708-710. (In Chinese.)

